A Real-time Energy Monitor System for the Ipns Linac*
نویسندگان
چکیده
Injected beam energy and energy spread are critical parameters affecting the performance of our rapid cycling synchrotron (RCS). A real-time energy monitoring system is being installed to examine the H beam out of the Intense Pulsed Neutron Source (IPNS) 50 MeV linac. The 200 MHz Alvarez linac serves as the injector for the 450 MeV IPNS RCS. The linac provides an 80 μs macropulse of approximately 3x10 H ions 30 times per second for coasting-beam injection into the RCS. The RCS delivers protons to a heavy-metal spallation neutron target for material science studies. Using a number of strip-line beam position monitors (BPMs) distributed along the 50 MeV transport line from the linac to the RCS, fast signals from the strip lines are digitized and transferred to a computer which performs an FFT. Corrections for cable attenuation and oscilloscope bandwidth are made in the frequency domain. Rectangular pulse train phasing (RPTP) is imposed on the spectra prior to obtaining the inverse transform (IFFT). After the IFFT, the reconstructed time-domain signal is analyzed for pulse width as it progresses along the transport line. Time-of-flight measurements of the BPM signals provide beam energy. Finally, using the 3-size measurement technique, the longitudinal emittance and energy spread of the beam are determined.
منابع مشابه
A New Real-Time Pricing Scheme Considering Smart Building Energy Management System
Real-time pricing schemes make the customers to feel the energy price volatility and improve their load profiles. However, these schemes have no significant effect on demand-side uncertainty reduction. In this paper, considering smart grid infrastructures and smart building Energy Management System (EMS), a new real-time pricing scheme is presented to reduce the uncertainty of demand-side. In t...
متن کاملMO-G-BRE-01: A Real-Time Virtual Delivery System for Photon Radiotherapy Delivery Monitoring.
PURPOSE Treatment delivery monitoring is important for radiotherapy, which enables catching dosimetric error at the earliest possible opportunity. This project develops a virtual delivery system to monitor the dose delivery process of photon radiotherapy in real-time using GPU-based Monte Carlo (MC) method. METHODS The simulation process consists of 3 parallel CPU threads. A thread T1 is resp...
متن کاملDevelopment of a Beam Loss Detection System for the CLIC Test Facility 3
The CLIC test facility 3 (CTF3) provides a 3.5A, 1.6μs electron beam pulse of 150MeV at the end of the linac. The average beam power is 4 kW. Beam losses will be monitored all along the linac in order to keep the radiation level as low as possible. The heavy beam loading of the linac can lead to time transients of beam position, size and energy along the pulse. To compensate for these transient...
متن کاملReal -Time Pricing Design Considering Uncertainty of Renewable Energy Resources and Thermal Loads in Smart Grids
In this paper, a novel real time pricing design is presented for Demand Response (DR) programs. A Load Serving Entity (LSE) is responsible to provide energy for flexible loads, inflexible loads and thermal loads. The LSE consider operation conditions of system and uncertainty of renewable energy resources and it designs a Real Time Price (RTP) demand response. The inflexible and thermal loads c...
متن کاملUse Singular Value Decomposition in Ten Minutes, or Your Money Back
Introduction Irwin has suggested singular value decomposition (SVD) analysis as a straightforward model-independent method of analysis of correlations among SLC control variables and readouts. This technique appears particularly suited for problems where a monitored variable is influenced by several non-orthogonal control variables that are subject to drifts and/or frequent tuning. The example ...
متن کامل